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Androgen-disruptors  are  environmental  chemicals  in  that  interfere  with  the  biosynthesis,  metabolism  or
action  of  endogenous  androgens  resulting  in a deflection  from  normal  male  developmental  programming
and  reproductive  tract  growth  and  function.  Since  male  sexual  differentiation  is  entirely  androgen-
dependent,  it  is  highly  susceptible  to  androgen-disruptors.  Animal  models  and  epidemiological  evidence
link  exposure  to  androgen  disrupting  chemicals  with  reduced  sperm  counts,  increased  infertility,  tes-
ticular  dysgenesis  syndrome,  and  testicular  and  prostate  cancers.  Further,  there  appears  to  be increased
sensitivity  to  these  agents  during  critical  developmental  windows  when  male differentiation  is  at  its
peak.  A  variety  of  in  vitro  and  in  silico  approaches  have  been  used  to  identify  broad  classes  of  androgen
ntiandrogen
inclozolin
DT

disrupting  molecules  that  include  organochlorinated  pesticides,  industrial  chemicals,  and  plasticizers
with  capacity  to  ligand  the  androgen  receptor.  The  vast  majority  of  these  synthetic  molecules  act  as anti-
androgens.  This  review  will  highlight  the  evidence  for androgen  disrupting  chemicals  that  act  through
interference  with  the  androgen  receptor,  discussing  specific  compounds  for  which  there  is  documented
in  vivo  evidence  for  male  reproductive  tract  perturbations.

This  article  is  part  of a  Special  Issue  entitled  ‘Endocrine  disruptors’.
. Introduction

Male reproductive health is defined by both the proper devel-
pment of the reproductive system and maintenance of function
hroughout adult life, including the capacity to reproduce. While
emale sexual differentiation, considered the default developmen-
al pathway, is largely independent of estrogens and androgens,

ale sexual differentiation is driven by androgens produced by
he fetal testes and is entirely androgen-dependent [1,2]. Conse-
uently, it is expected that endocrine-disrupting chemicals (EDCs)
hat interfere with androgen action will have a greater impact on

ale developmental programming and reproductive tract matura-
ion.

In contrast to estrogenic modes of action, relatively little is
nown about how androgenic/antiandrogenic EDCs at environ-
entally relevant concentrations affect male reproductive tract

ealth. Androgens mediate a wide range of developmental and
hysiological responses in the male and are crucial for testicular
nd accessory sex gland development and function, pubertal sexual
aturation in multiple organs, maintenance of spermatogenesis
nd maturation of sperm, male gonadotropin regulation through
eedback loops and various male secondary characteristics such as
one mass, musculature, fat distribution and hair patterning [2,3].
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Testosterone and its metabolite 5-�-dihydrotestosterone (DHT),
the primary androgenic hormones, mediate their biological effects
predominantly through binding of the androgen receptor (AR),
which is expressed in many end-organs including the hypothala-
mus, pituitary, liver, prostate, and testes [3].  There are multiple
sites whereby EDCs can interfere with androgen-dependent mech-
anisms and affect male reproductive tract health and these include
androgen synthesis, metabolism and clearance, feedback regula-
tion, AR expression in target organs, and direct AR binding [4–9].
This review will focus on EDCs that ligand the AR and in so doing,
behave in vitro as AR antagonists and/or, in a few cases, as AR ago-
nists. Further, we will highlight the in vivo evidence that some of
these man-made chemicals interfere with biological processes and
in so doing, disrupt male reproductive tract health and well-being.

2. Androgen receptor

The actions of androgens within target cells are transduced by
the low abundance intracellular AR, the number 4 member of the
NR3C subgroup of a nuclear receptor superfamily that mediates
the action of steroid hormones [10]. The human AR cDNA was  first
cloned in 1988 [11,12] and an AR has since been described in a
number of species including, mouse [13], rat [14], rabbit [15] mon-

key [16] and fish [17,18].  The single-copy androgen receptor gene
is localized on the human X chromosome between q11–q13 [19]
and contains 8 exons with a total length of 90 kb. As schematized
in Fig. 1, the large AR gene encodes a 115–120 kDa modular protein

dx.doi.org/10.1016/j.jsbmb.2011.04.004
http://www.sciencedirect.com/science/journal/09600760
http://www.elsevier.com/locate/jsbmb
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Fig. 1. Domain structure of the androgen receptor. The androgen receptor is com-
posed of a N-terminal domain (NTD) or A/B domain, with transactivation function
mediated through the AF-1 region, a DNA-binding (DBD) or C domain, harboring
two  zinc finders that recognize AREs in regulated genes, a hinge region or D domain,
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sures and have separate etiologies, a unifying hypothesis that links
nd a ligand-binding (LBD) or E domain that contains the steroid binding pocket and
elices 11 and 12 as well as the activation function-2 region (AF-2).

ith five domains that each harbor an autonomous function that
s critical to AR action; an N-terminal or A/B domain (NTD) with
ransactivation function, the DNA-binding or C domain (DBD), a
inge region or D domain and a ligand-binding or E domain (LBD)
20–22].

The first 30 residues of the AR NTD are highly conserved and
ritical for interactions with the LBD that provide for agonist-
nduced stabilization of the receptor [23]. This NTD-LBD interaction
etween 2 AR molecules is a property unique to AR among
he steroid receptor family. The NTD also harbors the transcrip-
ional Activation Function-1 (AF-1) domain which specifies the
ell and promoter-specific activity and functions as a site for co-
eceptor protein interaction. Phosphorylation of the NTD via the
ctions of multiple intracellular kinases is a well characterized
ost-translational modification that permits ligand-independent
R activation [23,24].  The AR gene has a unique feature compared

o its sex steroid receptor counterparts in that it contains poly-
orphic repeats of CAG (glutamine) and GGC (glycine) in the NTD,
hich have been linked to certain chronic diseases [24].

The DBD consists of two zinc-fingers that are encoded by exons
 and 3, respectively, which recognize and bind to the cis-acting
nhancer DNA sequences, or hormone response elements (HRE)
ocated within the regulatory regions of target genes. The first zinc-
nger composes the P-box (proximal box) conferring specificity
equences on the receptor protein and also forming a “recognition
elix” [25]. P-box residues are identical among the AR, proges-
erone and glucocorticoid receptors, therefore, these receptors bind

 common consensus HRE (or GRE). Amino acids of the second
inc-finger form the “D-box” (distal box) and are more specifically
nvolved in spacer sequence and provide an interface for recep-
or dimerization [25]. The D domain primarily serves to connect
he more highly conserved C and E domains of the receptor. Com-

only referred to as the “hinge” region, the D domain also harbors
 nuclear localization signal that influences cellular compartmen-
alization of the receptor.

The AR LBD is a highly structured, multifunctional region that
rimarily serves to bind androgens and also is the primary site for
DC interactions. The LBD of the AR in humans, rats and mice is
dentical and provides for high affinity binding of two endogenous
ndrogens, testosterone and 5�-hydroxy-testosterone (DHT), the
atter of which binds with much greater affinity [26]. Similar to
ther steroid receptors, the LBD contains an Activation Function-2
AF-2) domain located in the C-terminus. While the AF-2 augments
igand-dependent transcriptional activity for most steroid recep-
ors, this function is markedly weaker in the AR where the AF-2 is

ore involved in interactions with residues in the NTD [23]. Recep-
or binding to an agonist ligand leads to rearrangement of the LBD
uch that helix-11 is repositioned and helix-12 swings back to form

 “lid” over the binding pocket [27]. This agonist-induced reposi-
ioning of helix-12 leads to the formation of a hydrophobic cleft,
hich serves to recruit co-activators such as p160 to the receptor
omplex to promote receptor transcriptional activity. In contrast,
eceptor antagonists are unable to induce a similar repositioning
f helix-12, leading to receptor recruitment of co-repressors such
emistry & Molecular Biology 127 (2011) 74– 82 75

as NcoR and SMRT and a structure incompatible with co-activator
recruitment, thus making it less likely to activate transcription [28].

In the “classic” model of steroid receptor action, the AR resides
in the nucleus or cytoplasm but is sequestered in a multi-protein
inhibitory complex in the absence of hormone. Upon hormone
binding, a conformational change occurs in the receptor, transform-
ing it to an “activated” state that is now able to homodimerize, show
increased phosphorylation, and bind to HREs within target gene
promoters. The ligand/HRE-bound receptor complex interacts with
the general transcription apparatus either directly or indirectly via
co-regulatory proteins to promote transcription of the target gene
[25]. This classic steroid receptor mechanism is dependent on the
functions of both AF-1 and AF-2 domains of the receptor, which syn-
ergize via the recruitment of co-activator proteins to the DBD, most
notably the p160 family members. It is generally believed that the
DNA-bound receptor/co-activator complex facilitates disruption of
the chromatin and formation of a stable transcription pre-initiation
complex. Unique to AR among the sex steroid receptors is that
the agonist-liganded AR NTD interacts with co-repressors NCoR
and SMRT which function as negative regulators of androgen-
stimulated transcriptional activity [28]. Depending on the cell and
promoter context, the DNA-bound AR complex may positively or
negatively affect expression of the downstream target genes.

3. Evidence linking AR disruptors with disorders of male
health

The link between environmental chemicals and male infertil-
ity has been widely appreciated since 1962 with the publication of
Rachel Carson’s book, Silent Spring,  which highlighted the effects
of dichlorodiphenyltrichloroethanes (DDTs) on infertility in birds
and other wildlife. While human studies examining altered male
reproduction in relation to environmental chemicals were initially
limited, evidence has emerged over the years that suggests a link
between hormonally active toxicants and developmental repro-
ductive abnormalities [29]. Studies have raised the possibility that
EDCs may  be contributing to a decline in the human sperm count
that has been observed over the last 50–60 years [30–32].  A review
of 61 international studies involving 14,947 men  between 1938
and 1992 showed that the average sperm count had dropped from
113 million/ml in 1940 to 66 million/ml in 1990, in addition to
alterations in sperm morphology and motility [33]. Many epi-
demiological studies suggest a link between non-persistent (or
‘contemporary-use’) pesticide exposure and altered semen qual-
ity [34] suggesting that EDCs may  be the proximate cause. Two
recent studies based on occupational reports involving simulta-
neous exposure to several pesticides found associations between
pesticide exposures representative of that seen in the general pop-
ulation and reduced semen quality [35,36].

In addition to altered semen quality, other male reproductive
tract anomalies potentially attributable to EDCs have emerged with
increased frequency over the past few decades that together have
been described as testicular dysgenesis syndrome [37]. These disor-
ders in the human population, which include increased incidences
in cryptorchidism, hypospadias, oligozoospermia, and testicular
germ cell cancer, have been linked in some studies to prenatal
endocrine-disruptor exposure [37–43].  It is interesting to note
that the so-called testicular dysgenesis syndrome has geographi-
cal specificity which emphasizes the likelihood that environmental
factors contribute to these reproductive tract abnormalities [44].
Although not all cases of these disorders are a result of EDC expo-
these disorders provides an intriguing and compelling argument
that requires further investigation. Other male reproductive abnor-
malities that have been associated with EDCs that have AR disruptor
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Table 1
Endocrine-disrupting pollutants with antiandrogenic toxicity through binding of the AR.

Androgen-disruptor Effects and associated mechanism References

Diphenylmethanes
DDT Decreased fertility, cryptorchidism; inhibition of DHT binding to AR, perturbed Ca2+

mobilization, phosphorylation of c-ERB2/c-met; inhibition of p450scc
[9,74,130–134]

DDE  Cryptorchidism; inhibition of DHT binding to AR, MAPK pathway and PI3K activation,
interacts with GPR30

[9,74,133–136]

Methoxychlor Inhibition of somatic growth, reduced accessory sex gland weight, elevation of serum
prolactin; suppression of Leydig cell function; inhibition of spermatogenesis, decreased
seminal vesicles and epididymal weight, pubertal delay; induction of CYP28, CYP23A and
CAR, alterations in germline DNA methylation, ER activation, antiandrogen and
transgenerational effects

[82–85,87]

Bisphenol A (BPA) Aberrant development of prostate and urethra, increased anogenital distance, altered
periductal stroma, increases susceptibility to prostate hormonal carcinogenesis, inhibition
of  DHT binding to AR, ligands mutated ARs

[93,95,134,137–139]

Flutamides
Vinclozolin Hypospadias, undescended testes, delayed puberty, prostate disease among subsequent

generations; inhibition of DHT binding to AR, alters germline DNA methylation patterns
[100,134,140–143]

Linuron Disruption of reproductive tract development; reduction of epididymal and accessory sex
gland weight; increased serum estradiol and luteinizing hormone

[113]

Organochlorines
Lindan (�-HCH) Alterations in testes histology; inhibition of DHT binding to AR [74,117]
Procymidone Fetal rat: shortened anogenital distance, permanent nipples, hypospadias, ectopic

undescended testes, reduced weight and altered histology of prostate (and several other
androgen-dependent tissues)

[8]

Dieldrin/aldrin Reproductive performance affected at doses causing maternal intoxication; inhibition of
DHT binding to AR

[74]

Phthalates
Butylbenzylphthalate Reduced anogenital distance and weights of testes, epididymis, ventral prostate, and glans

penis, female-like areolas/nipples, hypospadias, cryptorchidism, oligospermia, infertility;
inhibition of DHT binding to AR

[80,134,144,145]
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4.1.1. Tetrabromoethylcyclohexanes (TBECHs)
Nonyilphenol MAPK pathway activation, PKC/cAMP mod
of  5�-reductase and 3�-hydroxysteroid-d
binding to AR

ctivity in both human epidemiology studies as well as in animal
odels included delayed puberty [45] and reduced anogenital dis-

ance in newborn boys [46].
Another area of male reproductive health potentially linked

o EDC exposures is cancers of the reproductive tract, specifi-
ally testicular and prostate cancers. Testicular cancer rates have
ncreased worldwide over the past 35 years with the greatest
ncrease observed in certain European populations. Although direct
vidence for increased testicular cancer due to EDC exposures is
ery limited, there are several reports [47,48] that suggest a link.
n utero diethylstilbestrol exposure has been associated with an
ncreased risk of testicular cancers [49] while maternal levels of
hlorinated chemicals suggests a link for these compounds with
ixed estrogenic and antiandrogenic activity to testicular cancer

ates in sons [50]. Further, a rabbit model for testicular cancer
dentified exposure to di-n-butylphthalates with antiandrogenic
ction to testicular carcinoma in situ [51]. There is compelling
ata for increased prostate cancer risk and exposure of farmers to
esticides, some which are inhibitors of p450 enzymes involved

n steroid metabolism [42,50,52].  Epidemiologic studies of occu-
ational exposure to PCBs revealed a strong exposure-response
elationship for prostate cancer risk [53] and prostate cancer mor-
ality [54]. While estrogenic activity of these compounds is a
uspected mode of action, there is also evidence that some PCBs
ay  behave as antiandrogens.
While there are many sites of action for chemicals to inter-

ere with androgen signaling, available evidence primarily classifies
hese compounds into two broad categories; (i) interference
ith androgen biosynthesis or metabolism to indirectly mod-
late androgen function (nonreceptor-mediated disruptors) and
ii) interaction with the androgen receptor to interfere with

he ligand-dependent transcriptional function (receptor-mediated
isruptors). Furthermore, it has been shown that some pesti-
ides can act by reducing androgen receptor expression [4–6].
n, reduced CYP1A1 expression; Reduction
ogenase activities; inhibition of DHT

[7,8]

For the purposes of this review, we here look at the exposure
to endocrine-disrupting pollutants with identified antiandrogenic
toxicity, mostly through binding of the androgen receptor to
alter proper folding of its ligand-binding domain (LBD), blocking
recruitment of co-activators and preventing transcriptional ini-
tiation. Androgen-disruptors acting via this mechanism include
vinclozolin, DDT, procymidone, linuron, lindane, dieldrin/aldrin,
methoxychlor, nonylphenol, and bisphenol-A ([7–9]; Table 1).
These chemicals will be discussed individually in the following
section based upon their chemical classifications.

4. Classification of AR disrupting chemicals

Androgen receptor-mediated disruptors can be classified into
agonists and antagonists. An agonist binds to androgen recep-
tor and triggers a response mimicking the action of a naturally
occurring androgen. In contrast, an antagonist acts opposite to
an agonist and blocks androgen receptor transactivation. Thus far,
there are limited studies on screening of androgen receptor bind-
ing activity for a large number of chemicals [55–62],  which include
studies based solely on their chemical structure [63,64].  Among
the systematic investigation of compounds, a pilot study by Araki
et al. [55] is the first report of industrial or environmental chem-
icals with AR agonist activity. However, not until a few years
ago was 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH;
Fig. 2) identified as the first potent environmental activator of the
human AR [65] and the only AR agonist for which in vivo study has
been performed [66].

4.1. Agonists
TBECH, a brominated flame retardant used in a variety of
products as insulation and stuffing in furnishings, its presence in
bothsediments and organisms along with its potent activation of AR



D.C. Luccio-Camelo, G.S. Prins / Journal of Steroid Biochemistry & Molecular Biology 127 (2011) 74– 82 77

F  eac
p

a
t
e
m
C
[

i
p
(
a
p
s
F
T

4

a
d
a

4
4
C
t
p

ig. 2. Two-dimensional molecular structures of selected androgen disruptors from
,p′-1,1-Dichloro-2,2-bis(p-chloroethyl)ethylene; nOP, 4-n-octylphenol.

t nanomolar concentrations caused TBECH to be ranked as one of
he 10% most hazardous compounds to ecosystems [67]. TBECH can
xist in four diastereoisomeric forms: � and �, found in the com-
ercial flame retardant marketed as Saytex BCL 462 by Albemarle

orp.; and � and �, converted from � and � at temperatures > 120 ◦C
68].

In silico analysis of interaction energies and in vitro bind-
ng assays showed that TBECH diastereomers � and � are more
otent activators of the human AR than � or � [69]. TBECH-��
50:50) binds to the AR with 22% of DHT’s binding affinity and
ll diastereomers induced expression of the downstream target
rostate-specific antigen (PSA) in vitro [69]. Nyholm et al. [66]
howed that TBECH can be maternally transferred in zebrafish.
uture studies are needed to determine the androgenic effects of
BECH in vivo.

.2. Antagonists

Environmental and industrial chemicals with antiandrogenic
ction cover wild range of chemical structures including flutamide
erivatives, diphenylmethanes, phthalates, organochlorines, and
lkylphenols (Fig. 2).

.2.1. Diphenylmethanes
.2.1.1. Dichlorodiphenyltrichloroethanes (DDTs) and Congeners.
ommercial DDT contains several isomers of which p,p′-1,1,1-
richloro-2,2-bis[p-chlorophenyl]ethane (p,p′-DDT) and its
ersistent metabolic derivative p,p′-1,1-Dichloro-2,2-bis(p-
h class. DHT, dihydrotestosterone; TBECH, tetrabromoethylcyclohexane; p,p′-DDE,

chloroethyl)ethylene (p,p′-DDE) are the major components. DDT
was  widely used as a pesticide in the United States until its
ban in 1972 after it was  found to have adverse effects on male
reproductive tract development in wildlife [9,70].  The Second
National Health and Nutrition Examination Survey conducted
between 1976 and 1980 revealed a prevalent human exposure
in 99.5% of the U.S. population with measurable serum p,p′-DDE
levels [71]. Although human exposure has declined significantly
since that time, some populations still bear significant levels
of p,p′-DDE [72,73] due to its considerably high environmental
half-life, bioaccumulation and the continued use of DDT against
malaria in some developing countries.

Regarding its properties as an AR disruptor, DDT isomers p,p′-
DDT, o,p′-1,1,1-trichloro-2,2-bis[p-chlorophenyl]ethane (o,p′-DDT)
[74], and metabolite p,p′-DDE [57] were shown to reduce bind-
ing of DHT to AR in vivo while p,p′-DDE inhibited DHT-induced
transcriptional activation in vitro [9].  In addition to AR antago-
nistic effects of DDT, p,p′-DDE at high concentrations has been
shown to function as an inhibitor of 5�-reductase, responsible for
converting testosterone to DHT [75] thus it is likely that these
compounds interfere with androgen signaling at multiple sites of
action.

Although human serum concentrations of DDT and p,p′-DDE
were only weakly associated to cryptorchidism or hypospadias in

offspring [76–79],  fetal and neonatal exposure in male produced
demasculinizing effects with a high incidence of epididymal and
testicular lesions [9,80],  and reduced prostate growth and inflam-
mation [81].
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.2.1.2. Methoxychlor. The insecticide methoxychlor is structurally
elated to DDT. Compared to DDT, however, it has low environ-
ental persistence and therefore was used to replace DDT as a

esticide after the later was banned in the United States. Beyond
ts considered estrogenic activity, methoxychlor also shows affin-
ty to the AR at comparable or even higher levels than DDTs [57].

hile methoxychlor exposure of neonatal rats did not affect males
uberty, reproductive organ weights or functions in adulthood
82,83], exposure throughout gestation, weaning, and lactation
esulted in multiple effects including inhibition of somatic growth
nd accessory sex gland weight, elevated pituitary and serum pro-
actin levels, delayed puberty, suppression of Leydig cell function,
educed sperm counts [84,85] and decreased DNA content of the
ccessory sex glands in the male offspring [86]. Rats fed 2000 ppm
ethoxychlor for 90 days exhibited decreased prostate size and cell

ontent [87]. Together, these biological endpoints indicate robust
ntiandrogenic activity of this environmental contaminant with
egard to male reproductive health.

.2.1.3. Bisphenol A (BPA). BPA is a synthetic polymer used in the
roduction of polycarbonate plastics and epoxy resins and signifi-
ant levels have been found in the urine of 93% of the US population
n a recent screen by the CDC [88]. While its mode of action is
elieved to be primarily as an estrogen receptor agonist, studies
ave also shown AR binding [57] and antagonistic activity for BPA
89]. Thus negative effects of BPA on male reproductive health need
o be evaluated in the context of its antiandrogenic capacity in addi-
ion to its estrogenic actions. BPA exposures have been linked to
educed sperm counts in a rodent model [90] and a human epi-
emiology study [91]. Recent assessment of occupational exposure
o BPA has linked erectile dysfunction in men  with high urinary BPA
evels [63].

The effects of BPA with regard to carcinogenic potential, includ-
ng the prostate gland, have recently been reviewed by an expert
anel [92]. In short, there is evidence from rodent models and
uman prostate cell lines that BPA can influence carcinogen-
sis, modulate prostate cancer cell proliferation, and for some
umors, stimulate progression [93,94,146]. Of particular interest
ith regard to AR action are the studies by Knudsen and colleagues
ho examined the influence of BPA on human prostate cancer cells

hat contained an AR point mutation (AR-T877A) frequently found
n advanced prostate cancers of patients who relapse after andro-
en deprivation therapy [95]. They first observed that 1 nM BPA
ctivates AR-T877A in transcriptional assays and leads to unsched-
led cell cycle progression and cellular proliferation in vitro in the
bsence of androgen. Since BPA had no impact on wild-type AR,
hese data indicate that this gain-of-function AR mutant attained
he ability to utilize BPA as agonist. Subsequent in vivo analy-
es of the impact of BPA on human prostate tumor growth and
ecurrence were performed using a mouse xenograft of human
ells containing the AR-T877A mutation. At environmental rele-
ant doses of BPA, i.e. at levels seen in human populations, prostate
umor size increased in response to BPA administration [94]. Fur-
her, xenografts of mice treated with BPA demonstrated an earlier
ise in PSA which is indicative of biochemical failure. These out-
omes underscore the need for further study of the effects of BPA
n prostate tumor progression and therapeutic efficacy.

.2.2. Flutamides

.2.2.1. Vinclozolin. Vinclozolin [3-(3,5-dichlorophenyl)-5-
ethyl-5-vinil-oxazolidine-2,4-dione] is a systemic dicarboximide

ungicide extensively used to control diseases caused by Botrytis

inerea, Sclerotinia sclerotiorum, and Moniliniam spp. on fruits,
egetables, ornamental plants and vines. It is a well known
ontaminant of the human diet with endocrine disrupting
otential as an AR antagonist through its primary metabolites
emistry & Molecular Biology 127 (2011) 74– 82

2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic
acid and 3′,5′-dichloro-2-hydroxy-2-methylbut-3-enanilide [96].
Vinclozolin has been shown to inhibit AR transactivation and
androgen-dependent gene expression [96–98].  Defects in prostate
development and ectopic location of the testes are equivalent to
those observed in rats treated with the antiandrogen flutamide,
suggesting a similar mechanism of action.

In vivo administration of vinclozolin at different doses, routes,
and periods (gestation, lactation, puberty, adulthood) dictates the
effects on the male reproductive tract. Chronic prostatitis induced
by transient in utero exposure during late gestation (days 14–19)
in rats was  not evident until puberty or thereafter and are reported
to be reversible by pubertal androgen treatments [99]. Peripuber-
tal oral administration of vinclozolin delayed puberty and altered
sex accessory gland and epididymal growth in male rats [100].
In contrast, exposure of rats to vinclozolin during midgestation,
time of sex determination, promoted multiple adult-onset pheno-
types including penile malformation, decreased sperm production
and motility, increased spermatogenic cell apoptosis, altered sperm
maturation proteins, hypospadias, cleft phallus, suprainguinal
ectopic testes, vaginal pouch, epididymal and testicular granulo-
mas, atrophic accessory sex glands, and kidney disease with tumor
development [80,99,101–106]. In studies performed by Skinner
and colleagues, the developmental vinclozolin exposure effects
were found to be heritable through multiple generations with con-
tinued defects observed in the F3 generation and beyond [107].
An epigenetic basis for the transgenerational disease phenotype of
vinclozolin has been established that involves perturbations in DNA
methylation patterns on the male germ cell [108].  It is important
to note that timing of the exposure is critical for the epigenetic and
transgenerational effects on vinclozolin and is related to the estab-
lishment of DNA methylation patterns during sex determination in
developing male germ cells on fetal days 8–14.

4.2.2.2. Linuron. Linuron is currently marketed as a selective
phenyl urea herbicide for pre- and/or post-emergence control of
weeds in crops. The structurally related diuron is used to keep
weeds from track systems and sporting grounds [109]. Both com-
pounds are degraded in the environment to 3,4-dichloroanilide and
further metabolized into 3,4-dichloroacetanilide [109].

Linuron displays weak affinity to AR [57,110–112]. In a 2-year
feeding trial, linuron increased the incidence of testicular tumors in
rats [111]. In short-term in vivo dosing, linuron treatment reduced
testosterone- and DHT-dependent tissue weights [80] and altered
the expression of androgen-regulated rat ventral prostate genes
[113]. In utero exposure to linuron (days 14–18) induced develop-
mental alterations of the testes and epididymides in the male rat
offspring [113].

4.2.3. Organochlorines
4.2.3.1. Hexachlorocyclohexanes. Commercial lindane is a hex-
achlorocyclohexane (HCH) and consists of several isomers (�, �,
�, �). The �-HCH form, which is used as an insecticide, tends to
accumulate in body fat of mammalian species and is the most
acutely toxic [114,115].  It has been shown that lindane binds to
AR in rat prostate [57,116], inhibits DHT binding [74], and causes
biochemical and histological changes in the rat testis [117]. The
�-HCH isomer is a byproduct in the manufacture of lindane and
accounts for 90% of the total HCH found in human milk [115]. Male
rats fed with �-HCH throughout lactation and weaning developed
reproductive toxicity characterized by reduced size of seminifer-
ous tubules and decreased number of interstitial cells along with

spermatogenic arrest [118].

4.2.3.2. Procymidone. Procymidone is a dicarboximide fungicide
structurally related to the well-characterized fungicide vinclozolin.
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t has low potential for bioaccumulation in the soil and moder-
te mobility. In vitro, procymidone binds AR [57,112,119], inhibits
HT binding in transfected COS (monkey kidney) cells, and inhibits
HT-induced transcriptional activation in CV-1 cells [8].

Procymidone causes reproductive malformations in the fetal
ale at dosage levels that have little effects on the reproduc-

ive tract of the adult male rat [8,80,119].  Maternal procymidone
xposure during gestation and early lactation caused shortened
nogenital distance, permanent nipples, reduced weight of sev-
ral androgen-dependent tissues (levator ani and bulbocavernosus
uscles, prostate, seminal vesicles, Cowper’s gland and glans

enis), and reproductive tract malformations (hypospadias, cleft
hallus, vaginal pouch, hydronephrosis, occasional hydroureter,
pididymal granulomas, and ectopic, undescended testes). In addi-
ion, perinatal procymidone treatment had a marked effect on the
istology of the lateral and ventral prostatic and seminal vesicular
issues displaying increased incidence of inflammation, similar to
hat produced by perinatal exposure to vinclozolin [8,80].

.2.3.3. Aldrin and dieldrin. Aldrin and its major metabolite, dield-
in, were used as insecticides until the early 1970s, when they were
idely restricted or banned. Aldrin is rarely found in food but dield-

in accumulates in the mammalian organism causing background
evels in the environment [115]. In vitro, aldrin binds AR [57] and
ieldrin reduces binding of DHT to AR [74]. In most of the reproduc-
ion studies (over one to six generations) carried out with aldrin or
ieldrin on mice and rats, the major effect was an increased mor-
ality rate in pups not yet weaned. Reproductive performance was
nly affected at doses causing maternal intoxication. Single doses of
ldrin and dieldrin, equal to about half the LD50, caused severe feto-
oxicity and an increased incidence of teratogenic abnormalities in
he mouse and hamster [120]. Mating studies of dieldrin-exposed
ats suggest male-dependent disturbances in fertility [121].

.2.4. Phthalates

.2.4.1. Butylbenzylphthalate (BBP). The diesters of 1,2-
enzenedicarboxylic acid (phthalic acid), commonly known
s phthalates, are a group of man-made chemicals widely used
n industrial applications. They are primarily used as plasticizers
n the manufacture of flexible vinyl plastic which, in turn, is used
n consumer products, flooring, and wall coverings, food contact
pplications, and medical devices [122]. They are also used in
ersonal-care products (e.g., perfumes, lotions, cosmetics), as
olvents and plasticizers for cellulose acetate, and in making
acquers, varnishes and coatings including those used to provide
imed release of some pharmaceuticals [122].

BBP was shown to binds AR in vitro [57]. In utero or perinatal
BP exposure of rats produced a diverse profile of reproduc-
ive malformations in the male offspring mainly characterized by
educed weight of the testis, epididymis, ventral prostate and glans
enis, reduced anogenital distance, female-like areolas/nipples,
nd decreased daily sperm production [80]. A large study on male
artners of subfertile couples from an infertility clinic in Mas-
achusetts [123,124] found a dose–response relationship between
onobenzyl phthalate (MBzP, the primary hydrolytic metabolite

f BBP) and sperm concentrations that fell below the WHO  refer-
nce value. In contrast to the U.S. study, a Swedish study found no
elationship between MBzP levels and any semen parameter [125].
he Swedish study population consisted of young men  (median age,
8-year-old; range, 18–21) from the general population, whereas in

he U.S. study the median age of the men  from an infertility clinic
as 35.5-year-old (ranged from 22 to 54). It is unclear whether
iddle-aged men, compared with young men, are more susceptible

o reproductive toxicants.
emistry & Molecular Biology 127 (2011) 74– 82 79

4.2.5. Alkylphenols
Alkylphenol ethoxylates (APE) is surfactants widely used as

industrial (such as textile and paper industry) and laboratory
detergents, antioxidant, plastic stabilizers, as well as carriers in
agricultural pesticides. In sewage treatment plant effluents, APEs
are degraded to more stable, persistent, and hydrophobic alkylphe-
nols such as 4-n-nonylphenol (nNP) and 4-n-octylphenol (nOP).
Although alkyl phenols are mainly known for their estrogenic prop-
erties, nNP and nOP have been found to be weakly antiandrogenic
in recombinant yeast reporter gene assays [8,59,89,126].  Neona-
tal exposure to nOP negatively affected pubertal spermatogenesis
by significant advanced lumen formation and decreased apoptotic
rate of germ cells [127], and reduced plasma testosterone [128] in
male rat offspring. Male rats exposed during gestation or during
the first 21 days of postnatal life caused reduction in testicular size,
ventral prostate weight, and daily sperm production [129].

5. Summary

This review has synthesized the current evidence for EDCs act-
ing as disruptors of androgen signaling in the male reproductive
tract. Although the list is not comprehensive, it is clear that suffi-
cient data has accrued to indicate that environmental contaminants
are capable of deleterious effects on male reproductive tract health
through their abilities to act as AR antagonists, or in a few cases,
as AR agonists. While mechanistic data mostly arises from in vitro
assays and in vivo animal models, there are an increasing number
of human studies and epidemiology reports that document clear
negative impacts on the human male. While further research at
all levels is required to provide detailed understandings of mecha-
nisms and impacts, it is important to take caution at this stage with
the continued use of environmental compounds that disrupt male
reproductive health. Importantly, continued studies are required
to monitor the use of the known compounds as well as to screen all
chemicals for potential AR disrupting activity so that caution may
be applied with their continued use.
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